## Service instructions for heating engineers



Vitoplex 100 Type PV1 Oil/gas fired boilers



## **VITOPLEX 100**



## Safety instructions

Please follow these safety instructions closely to prevent accidents and material losses

#### Safety instructions explained



#### Danger

This symbol warns against the risk of injury.

#### Please note

I This symbol warns against the risk of material losses and environmental pollution.

#### Note

Details identified by the word "Note" contain additional information

#### Target group

These instructions are exclusively designed for gualified personnel.

- Work on gas equipment must only be carried out by a registered gas fitter.
- Electrical work must only be carried out by a qualified electrician.
- The system must be commissioned by the system installer or a qualified person authorised by the installer.

#### Regulations

Observe the following when working on this system

- all legal instructions regarding the prevention of accidents.
- all legal instructions regarding environmental protection.
- the Code of Practice of relevant trade associations.
- all current safety regulations as defined by DIN, EN, DVGW, TRGI, TRF, VDE and all locally applicable standards

#### If you notice a smell of gas



#### Danger

- Escaping gas can lead to explosions which may lead to serious iniurv.
  - Do not smoke! Prevent naked flames and sparks. Never switch electrical lights or equipment.
  - Open windows and doors.
  - Close the gas shut-off valve.
  - Shut down the heating system.
  - Remove all people from the danger zone.
  - Observe the safety regulations of your local gas supplier found on the gas meter.

## Safety instructions (cont.)

#### If you smell flue gas



Danger

Flue gas can lead to

- life-threatening poisoning.
- Shut down the heating system.
- Ventilate the boiler room.
- Close all doors leading to the living space.

#### Working on the heating system

- Isolate the system from the mains power supply and check that it is no longer 'live', e.g. by removing a separate fuse or by means of a mains electrical isolator.
- Safeguard the system against unauthorised reconnection.
- When using gas as fuel, also close the main gas shut-off valve and safeguard against unauthorised reopening.

#### Repair work

- Please note
- Repairing components which fulfil a safety function can compromise the safe operation of your heating system. Replace faulty components only with original Viessmann spare parts.

# Ancillary components, spare and wearing parts

#### Please note

Spare and wearing parts which have not been tested together with the heating system can compromise its function. Installing non-authorised components and non-approved modifications/conversion can compromise safety and may infringe our warranty conditions.

For replacements, use only original spare parts from Viessmann or those which are approved by Viessmann.

## **Operating and service documents**

- 1. Complete and detach the customer registration card:
  - Give the system user this part for safe-keeping.
  - Retain the heating engineer part.
- Keep all parts lists, operating and service instructions in the folder and hand this over to the system user.

The installation instructions will not be required after the installation is completed, and may therefore be discarded. Index

## Index

## Page

| General information                            | 2  |
|------------------------------------------------|----|
| Operating and service instructions             | 2  |
| Initial start-up, inspection and maintenance   |    |
| Steps                                          | 5  |
| Further details regarding the individual steps | 6  |
| Parts list                                     | 17 |
| Water quality requirements                     | 20 |
| Specification                                  | 21 |
| Commissioning/service report                   | 22 |
| Declaration of conformity                      | 23 |
| Manufacturer's certificate                     | 24 |
| Keyword index                                  | 25 |

## Steps – Initial start-up, inspection and maintenance

For further instructions on individual steps, see pages indicated.

| Г |    |   | <ul> <li>Commissioning steps</li> </ul>                                             |      |
|---|----|---|-------------------------------------------------------------------------------------|------|
|   |    |   | <ul> <li>Inspection steps</li> </ul>                                                |      |
|   | V  | V | <ul> <li>Maintenance steps</li> </ul>                                               | Page |
| С | 1  | Μ | 1. System start-up                                                                  | 6    |
|   | 1  | Μ | 2. System shutdown                                                                  | 8    |
|   | I. | м | 3. Closing Vitoair draught stabiliser<br>(if installed)                             | 8    |
|   |    | Μ | 4. Opening boiler door and clean-out cover                                          | 8    |
|   |    | м | 5. Cleaning turbulators, heating surface,<br>flue outlet and flue pipe              | 9    |
|   | I. | м | <ol><li>Checking all seals/gaskets and packing cords<br/>on flue gas side</li></ol> |      |
|   | 1  | Μ | 7. Checking thermal insulation of boiler door                                       |      |
|   |    | Μ | 8. Inserting turbulators                                                            | 10   |
|   |    | Μ | 9. Securing boiler door and clean-out cover                                         | 11   |
|   | I  | м | 10. Checking connections and sensor well for leaks<br>on primary side               |      |
|   | 1  | Μ | 11. Checking function of all safety equipment                                       | 12   |
|   | I  | м | 12. Checking diaphragm expansion vessel and<br>system pressure                      | 12   |
|   | I  | м | 13. Checking tightness of electrical connections and<br>cable grommets              |      |
|   | 1  | Μ | 14. Checking thermal insulation                                                     |      |
|   |    | Μ | 15. Checking water quality                                                          | 14   |
|   | 1  | Μ | 16. Cleaning sight glass in boiler door                                             | 15   |
|   | 1  | Μ | 17. Checking mixer for easy operation and leaks                                     | 15   |
|   | I  | м | 18. Checking function of return temperature raising<br>facility (if installed)      |      |
|   | I  | Μ | 19. Checking boiler room ventilation                                                |      |
|   | I  | Μ | 20. Checking flue pipe for leaks                                                    |      |
|   | I  | Μ | 21. Checking Vitoair draught stabiliser (if installed)                              | 15   |
|   |    | Μ | 22. Burner adjustment                                                               | 16   |

## System start-up



Operating instructions, service instructions – control unit and burner

- 1. Check that the turbulators are fully pushed into the hot gas flues (see page 10). Open the boiler door for this.
- 2. Check that the boiler room ventilation aperture is open.
- Fill the heating system with water and ventilate the system.
   Permiss. operating pressure .... 5 bar
  - Please note
  - If you **do not** fill your heating system **with soft heating water**, but instead with water which meets the requirements stated under "Heating water requirements" on page 20, you **must** observe the following during commissioning to prevent a build-up of scale:

Scaling of your boiler can be influenced when commissioning your heating system, by the way it is started up.

By starting with low output or slow heating up in stages, scaling generally takes place evenly over the entire heating surface, i.e. not predominantly on the walls with the greatest thermal density.

For multi-boiler systems, we recommend taking all boilers into use simultaneously. Where only one boiler in a multi-boiler system is taken into use the entire scaling (calcium content) is concentrated on the heating surface of that one boiler. If commissioning with only one boiler cannot be avoided, the maximum fill and top-up water volume is determined only on the output of the one boiler. and not on the output of the

No particular steps are required during commissioning, if you fill the heating system with softened water.

entire heating system.

#### Note

Enter the fill volume and concentration of calcium hydrogen carbonate on page 14.

- 4. Check the system pressure.
- **5.** Check the fuel oil level or the gas supply pressure.

- 6. Open the flue gas damper (where appropriate).
- 7. Check whether the cleaning aperture on the flue outlet is closed.
- 8. Open the shut-off valves in the oil or gas supply pipe.
- **9.** Switch ON the mains electrical isolator, the switch for the heating circuit pump and the burner ON/OFF switch in the order listed here (observe the burner manufacturer's instructions).
- 10. When heating the system from cold (also when restarting after maintenance and cleaning work), prevent all heat transfer to consumers, in order to clear the dew point range as quickly as possible.

- **11.** After the flow temperature has been reached, sequentially switch on the heat consumers and change over to automatic mode.
- Check all gaskets/seals and plugs for leaks and retighten if necessary.
- Check the boiler door and clean-out cover after approx.
   50 hours and retighten all screws.

Initial start-up, inspection and maintenance

## Further details regarding the individual steps (cont.)

## System shutdown

Danger Only open the heating water connections after the boiler has been de-pressurised. Drain the boiler with a vacuum pump only when the air vent valve has been cracked open.

## Closing Vitoair draught stabiliser (if installed)

**1**. Switch ON the burner.

2. Switch OFF the system, when pre-purge is running. This closes the control disc.

## Opening boiler door and clean-out cover

#### Note

Remove the gas supply pipe on gas burners.



## Cleaning turbulators, heating surface, flue outlet and flue pipe



- **1.** Remove turbulators (A) without force. For this, use the turbulator extractor supplied.
- Clean flues (B) and combustion chamber (C) with the brush supplied. Remove combustion residues with a vacuum cleaner.



**3**. Remove combustion residues from the flue pipe and the flue outlet through the clean-out aperture in flue outlet (D) using a vacuum cleaner.

## Inserting turbulators

#### Please note

Burner adjustments and specific system conditions can lead the turbulators to move forward, which may result in them being burnt. The thermal insulation on the boiler door can also be damaged by this.



- Pull approx ¾ of the length of turbulators (A) out of flue gas pipes (B).
- **2.** Bend turbulators approx. 10-15°.
- **3.** Insert the turbulators into the flue gas pipes until they meet the end stop. When doing this, check the preliminary tension.

#### Note

Turbulators must not be able to be pulled from the flue gas pipes easily.

## Securing boiler door and clean-out cover

#### Note

Refit the gas supply pipe on gas burners.

## Danger Carry out a leak test on all gas supply connections.



A Tighten the screws diagonally.

## Checking function of all safety equipment

Check the safety valves and the water level and pressure limiters in accordance with manufacturer's instructions.

## Checking diaphragm expansion vessel and system pressure

Observe the diaphragm expansion vessel manufacturer's instructions. Carry out this test on a cold system.

#### Pump controlled pressure maintaining systems

## Please note

In heating systems with automatic pressure maintaining equipment and/or de-gassing systems (operating according to the pressure reduction method for de-gassing), we recommend the installation of a diaphragm expansion vessel (DEV) as individual boiler protection. The diaphragm expansion vessel must be able to hold the heating water expansion volume inside the boiler, and provide a capacity of at least 35 litres.

This diaphragm expansion vessel reduces the frequency and severity of pressure fluctuations; the service life of the pressure pump is improved and consequently the operational reliability and service life of system components also improve.

Damage on boiler or other system components may result if these recommendations are not followed.

Carry out all checks in accordance with manufacturer's instructions. Limit pressure fluctuations to the lowest possible differential. Cyclical pressure fluctuations and more significant pressure differentials point towards a system fault. Immediately remedy such faults, otherwise other heating system components may become faulty.

#### Diaphragm expansion vessels

 Drain the system or close the cap valve on the diaphragm expansion vessel and reduce the pressure, until the pressure gauge indicates "0".

#### Note

The inlet pressure of the diaphragm expansion vessel ( $p_0$ ) comprises the static system pressure ( $p_{St}$ ) (= static head) and a supplement ( $p_0 = p_{St}$  + supplement). The supplement is subject to the settings of the high limit safety cut-out. It corresponds to the high limit safety cut-out setting as follows:

■ 100 °C 0.2 bar ■ 110 °C 0.7 bar.

- If the inlet pressure of the diaphragm expansion vessel is lower than the static system pressure, top up with enough nitrogen to raise the inlet pressure 0.1 to 0.2 bar higher than the static system pressure. The static pressure corresponds to the static height.
- **3.** Top up the heating system with water, until the filling pressure of a cool system is 0.1 to 0.2 bar higher than the inlet pressure of the diaphragm expansion vessel. Permiss. operating pressure .... 5 bar

## Checking water quality

For requirements, see page 20.

Enter the quantity of top-up water and the respective calcium hydrogen carbonate concentration  $[Ca(HCO_3)_2]$  into the table.

| Fill<br>water  | Top-up<br>water | Meter<br>reading | Total<br>water           | Concentration<br>[Ca(HCO <sub>3</sub> ) <sub>2</sub> ] | Water treatment |                    | t Date |  |
|----------------|-----------------|------------------|--------------------------|--------------------------------------------------------|-----------------|--------------------|--------|--|
| m <sup>3</sup> | m <sup>3</sup>  | m <sup>3</sup>   | volume<br>m <sup>3</sup> | mol/m <sup>3</sup>                                     | Agent           | Metering<br>volume |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |
|                |                 |                  |                          |                                                        |                 |                    |        |  |

Max. fill volume: m<sup>3</sup>

## Cleaning sight glass in boiler door



Check gaskets and hose connection for leaks.

## Checking mixer for easy operation and leaks

- 1. Remove the motorised lever from the mixer handle, and check the mixer for ease of movement.
- Check the mixer for leaks. Replace the O-rings if the mixer leaks.
- **3.** Snap the motorised lever into place.

## Checking Vitoair draught stabiliser (if installed)

Release the latch on the control disc. The control disc must swing freely during burner operation.

## Burner adjustment



For burner settings, see separate burner documentation.

Adjust the highest oil or gas throughput of the burner to the rated boiler output.

| Rated output | Pressu<br>hot ga | re drop on<br>s side |
|--------------|------------------|----------------------|
| kW           | Pa               | mbar                 |
| 110-150      | 70               | 0.7                  |
| 151-200      | 130              | 1.3                  |
| 201-250      | 140              | 1.4                  |
| 251-310      | 220              | 2.2                  |
| 311-400      | 250              | 2.5                  |
| 401-500      | 260              | 2.6                  |
| 501-620      | 360              | 3.6                  |

To protect the system against dew point corrosion, burner stage 2 (full output) must be set to the rated boiler output and must not be switched OFF even in summer (stage 2 constant standby).

#### Operation with burner load $\ge 60\%$

The minimum boiler water temperature is 50 °C for oil fired operation and 60 °C for gas fired operation. To protect the boiler, the minimum output at the base load stage is set to 60% of rated output.

| Rated output | Minimum output<br>to be set<br>(burner stage 1) |
|--------------|-------------------------------------------------|
| kW           | kW                                              |
| 110-150      | 90                                              |
| 151-200      | 120                                             |
| 201-250      | 150                                             |
| 251-310      | 186                                             |
| 311-400      | 240                                             |
| 401-500      | 300                                             |
| 501-620      | 372                                             |

A minimum flue gas temperature is required for the base load stage, the value of which is subject to the design of the flue gas system.

#### Operation with burner load < 60%

The minimum boiler water temperature is 60 °C for oil fired operation and 65 °C for gas fired operation. Set the minimum heating output for the base load stage according to the conditions of the flue gas system. Note that the flue gas system must be suitable for the low flue gas temperatures which may arise.

5692 576 GB

## Parts list

#### When ordering spare parts

Quote the type and serial no. (see type plate) and the item no. of the required part (as per parts list). Obtain common parts from your local supplier.

#### Parts

- 001 Door
- 002 Stud
- 003 Sight glass pack, comprising: item 004 to 008
- 004 Hose
- 005 Sight glass closure
- 006 Sight glass with item 007
- 007 Seal ring
- 008 Hose coupling nipple
- 009 Hose pack  $\varnothing$  18 mm
- 010 Insulating block
- 011 Insulating mat I
- 013 Packing 20 × 15 mm
- 014 Turbulator
- 015 Gasket
- 016 Clean-out cover
- 017 Packing 10 × 10 mm
- 018 Sensor well
- 200 Top front panel
- 201 Top rear panel
- 202 Bottom rear panel
- 203 Side panel, r.h. front and I.h. back
- 204 Side panel, l.h. front and r.h. back
- 205 R.h. top panel
- 206 L.h. top panel
- 207 Insulating casing
- 208 Rear insulating mat
- 209 Vitoplex logo
- 210 Control unit bracket

- Parts not shown
- 300 Installation instructions
- 301 Service instructions
- 303 Insulation pack
- 304 Touch-up spray, Vitosilver
- 305 Touch-up paint stick, Vitosilver

Accessories

- 020 Brush handle
- 021 Extension
- 022 Brush handle

Wear parts 019 Cleaning brush

- Type plate, optionally l.h. or r.h. side
- Boiler control unit, see parts list in the boiler control unit service instructions
- © Burner cable, see parts list in the boiler control unit service instructions

#### Parts list

## Parts list (cont.)



## Parts list (cont.)



Appendix

## Water quality requirements (VDI 2035)

# Heating systems with rated operating temperatures up to 100 °C (VDI 2035)

#### Heating water requirements

| Total boiler output<br>of the system [Q)            | Calcium hydrogen<br>carbonate concentration<br>[Ca(HCO <sub>3</sub> ) <sub>2</sub> ] of fill<br>and top-up water | Maximum permissible fill<br>and top-up water volume<br>[V <sub>max</sub> ]       |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $100 \text{ kW} < \dot{\Omega} \leq 350 \text{ kW}$ | Ca $(HCO_3)_2 \leq 2.0 \text{ mol/m}^3$                                                                          | V <sub>max</sub> [m <sup>3</sup> ] = three times the system volume               |
| $350 \text{ kW} < \dot{Q} \leq 1000 \text{ kW}$     | Ca $(\text{HCO}_3)_2 \leq 1.5 \text{ mol/m}^3$                                                                   | or<br>$V_{max} [m^3] =$<br>0.0313 × $\frac{\dot{O} [kW]}{Ca(HCO_3)_2 [mol/m^3]}$ |

\*<sup>1</sup>The requirements for systems with  $\dot{\Omega}$  > 100 kW apply to the replacement of the boiler in systems originally with  $\dot{\Omega}$  > 100 kW and a system water volume  $\geq$  20 litre/kW.

## Specification

| kW           | 110                              | 151                                                                                                                                                                       | 201                                                                                                                                                                                                                                                                                                                                         | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 401                                                                                                                                                                | 501                                                                                                                                                                                 |
|--------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | to                               | to                                                                                                                                                                        | to                                                                                                                                                                                                                                                                                                                                          | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to                                                                                                                                                                 | to                                                                                                                                                                                  |
|              | 150                              | 200                                                                                                                                                                       | 250                                                                                                                                                                                                                                                                                                                                         | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                | 620                                                                                                                                                                                 |
|              |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
|              |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
|              |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
| °C           | 200                              | 200                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                | 200                                                                                                                                                                                 |
| °C           | 140                              | 140                                                                                                                                                                       | 140                                                                                                                                                                                                                                                                                                                                         | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140                                                                                                                                                                | 140                                                                                                                                                                                 |
| °C           | 215                              | 215                                                                                                                                                                       | 215                                                                                                                                                                                                                                                                                                                                         | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 215                                                                                                                                                                | 215                                                                                                                                                                                 |
|              |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
| Product ID C |                                  |                                                                                                                                                                           | CE-0085 BP 0365                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
| EnEV)        |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
|              |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
| %            | 91.2                             | 91.3                                                                                                                                                                      | 91.4                                                                                                                                                                                                                                                                                                                                        | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.6                                                                                                                                                               | 91.7                                                                                                                                                                                |
| %            | 95.7                             | 95.7                                                                                                                                                                      | 95.8                                                                                                                                                                                                                                                                                                                                        | 95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96.0                                                                                                                                                               | 96.1                                                                                                                                                                                |
| %            |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
|              |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
|              |                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                     |
| W            | 465                              | 529                                                                                                                                                                       | 606                                                                                                                                                                                                                                                                                                                                         | 678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 854                                                                                                                                                                | 950                                                                                                                                                                                 |
| W            | 155                              | 176                                                                                                                                                                       | 202                                                                                                                                                                                                                                                                                                                                         | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 285                                                                                                                                                                | 317                                                                                                                                                                                 |
|              | kW<br>°C<br>°C<br>°C<br>°C<br>°C | kW         110<br>to<br>150           °C         200<br>°C           °C         215           EnEV)         91.2<br>95.7           %         91.2           %         155 | kW         110<br>to<br>150         151<br>to<br>200           °C         200<br>140<br>215         200<br>200<br>140<br>215           °C         200<br>140<br>215         200           °EnEV)         91.2<br>95.7         91.3<br>95.7           %         91.2<br>95.7         91.3<br>95.7           %         155         529<br>176 | kW         110<br>to<br>150         151<br>200         201<br>to<br>200           °C         200         200         250           °C         200         200         200           °C         140         140         140           °C         215         215         215           EnEV)         91.2         91.3         91.4           %         95.7         95.7         95.8           %              W         465         529         606           W         155         176         202 | kW         110         151         201         251           to         to         to         to         to           200         200         250         310           °C         200         200         200         200           °C         140         140         140         140           °C         215         215         215         215           EnEV)         91.2         91.3         91.4         91.5           %         95.7         95.7         95.8         95.8           %               W         465         529         606         678           W         155         176         202         226 | $\begin{array}{c ccccc} kW & 110 & 151 & 201 & 251 & 311 \\ to & to & to & to & to \\ 150 & 200 & 250 & 310 & 400 \\ \hline \\ & & & & & & & & & \\ & & & & & & &$ | $\begin{array}{c ccccc} kW & 110 & 151 & 201 & 251 & 311 & 401 \\ to & to & to & to & to & to \\ 150 & 200 & 250 & 310 & 400 & 500 \\ \hline \\ & & & & & & & & & & & & \\ & & & &$ |

\*1Values for calculating the size of the flue system to EN 13384 based on 13% CO<sub>2</sub> for fuel oil EL and 10% CO<sub>2</sub> for natural gas.

Flue gas temperature measured at 20°C combustion air temperature. \*2Standard characteristics

5692 576 GB

## Appendix

## Commissioning/service report

|       | Initial start-up | Maintenance/service | Maintenance/service |
|-------|------------------|---------------------|---------------------|
| date: |                  |                     |                     |
| by:   |                  |                     |                     |

|       | Maintenance/service | Maintenance/service | Maintenance/service |
|-------|---------------------|---------------------|---------------------|
| date: |                     |                     |                     |
| by:   |                     |                     |                     |

|       | Maintenance/service | Maintenance/service | Maintenance/service |
|-------|---------------------|---------------------|---------------------|
| date: |                     |                     |                     |
| by:   |                     |                     |                     |

|       | Maintenance/service | Maintenance/service | Maintenance/service |
|-------|---------------------|---------------------|---------------------|
| date: |                     |                     |                     |
| by:   |                     |                     |                     |

|       | Maintenance/service | Maintenance/service | Maintenance/service |
|-------|---------------------|---------------------|---------------------|
| date: |                     |                     |                     |
| by:   |                     |                     |                     |

## **Declaration of conformity**

We, Viessmann Werke GmbH&Co KG, D-35107 Allendorf, declare as sole responsible body, that the product

# Vitoplex 100, type PV1 with Vitotronic boiler control unit

| corresponds to the following<br>standards: | In accordance with the following guidelines |
|--------------------------------------------|---------------------------------------------|
| EN 226                                     | 73/ 23/EEC                                  |
| EN 267                                     | 89/336/EEC                                  |
| EN 303                                     | 90/396/EEC                                  |
| EN 676                                     | 98/ 37/EC                                   |
| EN 14 394                                  |                                             |
| EN 50 082-1                                | this product is designated as               |
| EN 50 165                                  | follows:                                    |
| EN 55 014                                  |                                             |
| EN 60 335                                  | C€-0085                                     |
| EN 61 000-3-2                              |                                             |
| EN 61 000-3-3                              |                                             |
| TRD 702                                    |                                             |

This product meets the requirements of the Efficiency Directive (92/42/EEC) for:

Standard boiler (boiler < 400 kW)

In addition, this boiler meets the requirements of all current TRD regulations.

The product characteristics determined as system values for Vitoplex 100 as part of EC type testing according to the Efficiency Directive (see specification table) can be utilised for the energy assessment of heating and ventilation equipment to DIN V 4701-10 specified by the EnEV [Germany].

#### Appendix

## Manufacturer's certification according to the 1<sup>st</sup> BlmSchV

We, Viessmann Werke GmbH&Co KG, D-35107 Allendorf, confirm that the following product meets the standards set by the 1<sup>st</sup> BImSchV para.7 (2) [Germany]:

- NO<sub>x</sub> limits and
- efficiency level of at least 91% (boiler < 400 kW):

#### Vitoplex 100, type PV1

Allendorf, 30 September 2004

Viessmann Werke GmbH&Co KG

lum

pp. Manfred Sommer

## **Keyword index**

#### В

Boiler door and clean-out cover, opening, 8 Boiler door and clean-out cover, securing, 11 Burner adjustment, 16

## С

Clean-out cover, opening, 8 Commissioning/service report, 22

#### D

Declaration of conformity, 23 Diaphragm expansion vessel, checking, 12

#### F

Flue outlet and flue pipe, cleaning, 9 Further details regarding individual steps, 6

#### н

Heating surface, cleaning, 9 Heating system, filling with water, 6

#### М

Manufacturer's certificate, 24 Mixer, checking for ease of operation and leaks, 15

## ο

Operating and service instructions, 3

#### Ρ

Parts list, 17 Pressure of system, checking, 12

#### S

Safety instructions, 2 Sight glass in boiler door, cleaning, 15 Specification, 21 Steps, 5 System start-up, 6

## Т

Turbulators, cleaning, 9 Turbulators, inserting, 10

#### w

Water quality, checking, 14 Water quality requirements, 6, 20

5692 576 GB

Viessmann Werke GmbH & Co D-35107 Allendorf Tel: +49 6452 70-0 Fax: +49 6452 70-27 80 www.viessmann.de

Viessmann Limited Hortonwood 30, Telford Shropshire, TF1 7YP, GB Tel: +44 1952 675000 Fax: +44 1952 675040 E-mail: info-uk@viessmann.com